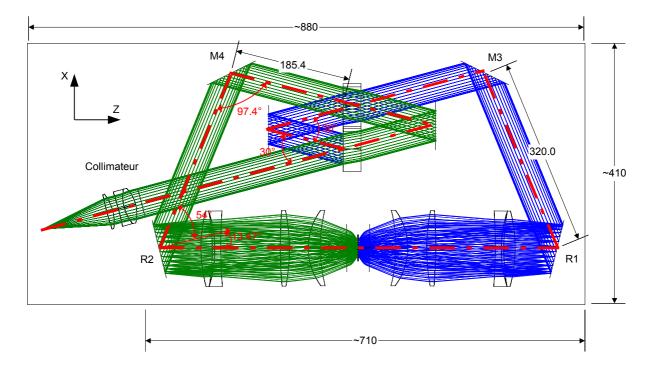
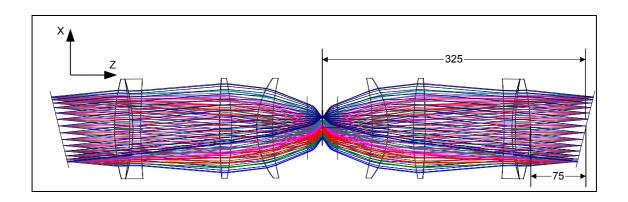
SPECIFICATIONS

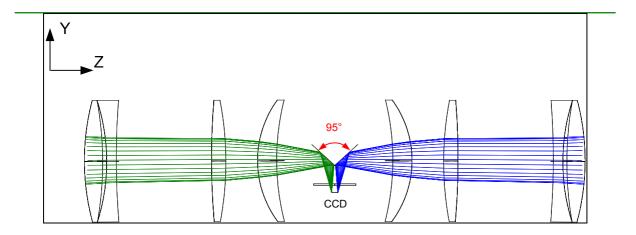
- fibre d'alimentation : cœur de $60\mu m$

- Bande passante : $[0.40-0.56]\mu m$


- L'ensemble du spectre étalé sur 1024 pixels de 26µm
- Objectif focale 133.26mm (grandissement 1.06)


Basé sur le document « Spécifications pour le sismomètre interférentiel SIAMOIS» de Jean-Pierre Maillard daté du 27 juin 2003.

OPTIQUE


DESIGN OPTIQUE

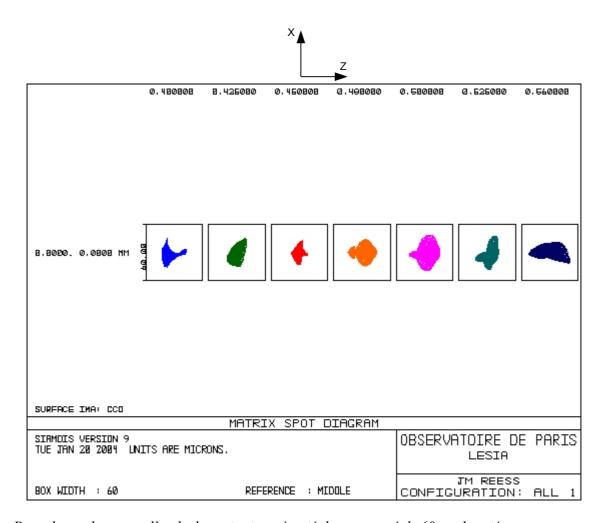
(fichier zemax \ Version10 \ Version 10xxx.zmx)

JM REESS – Version 10 03/02/2004

Collimateur:

Triplet focale 125mm, F/2.5, voir tolérances plus bas

Réseau:

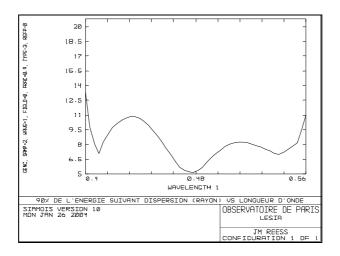

incidence: -54°

densité de traits : 1200/mm

Objectif quadruplet

Voir tolérance objectif plus bas

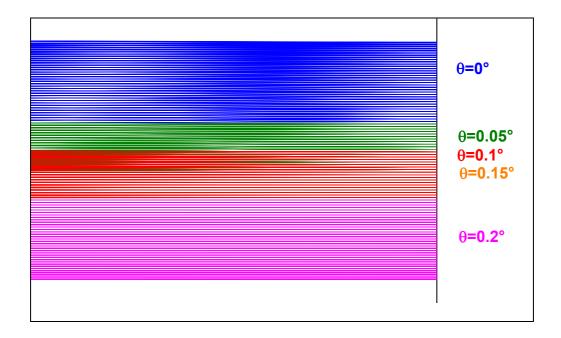
SPOT DIAGRAMS

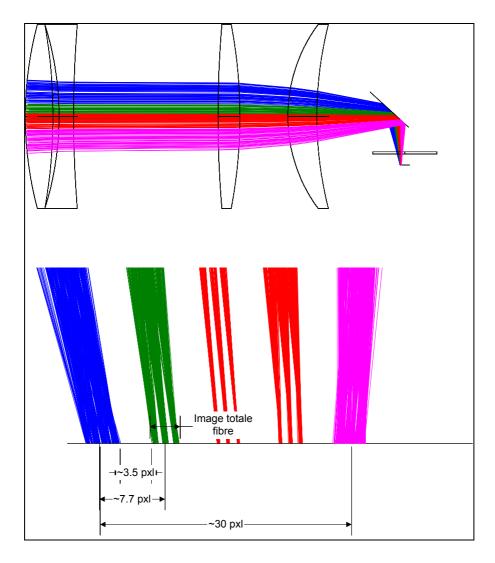


Pour chaque longueur d'onde, le spot est représenté dans un carré de 60µm de coté.

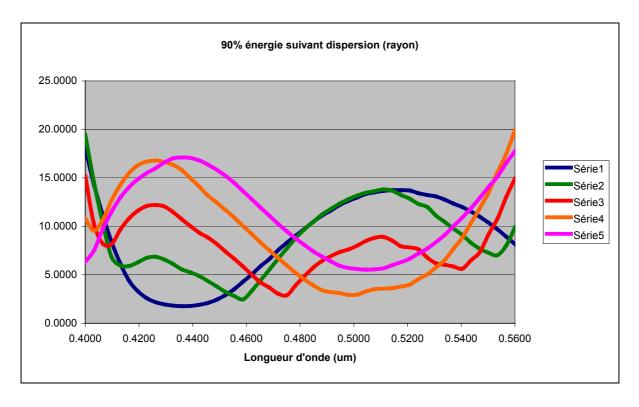
Attention : le sens de la dispersion est parallèle à X

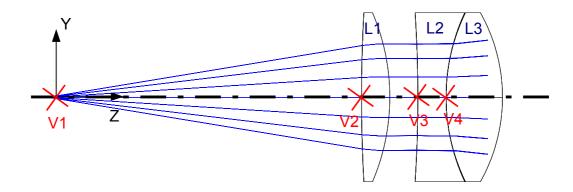
JM REESS – Version 10


ENERGIE A 90% LE LONG DE LA DISPERSION EN RAYON VS LONGUEUR D'ONDE


MIROIRS A DEVIATION CROISEE

On ne s'intéresse ici qu'à une seule des deux voies. Les interférogrammes sont séparés d'environ 7.7 pixels


ANGLES DU MIROIR


SEPARATION DES INTERFEROGRAMMES

ENERGIE A 90% LE LONG DE LA DISPERSION EN RAYON VS LONGUEUR D'ONDE

COLLIMATEUR

Lentille 1

♦ type: Biconvexe

♦ matériau: S-TIL27 (OHARA)

• rayon de courbure face 1: (546.887 ± 0.05) mm

• rayon de courbure face 2: (-76.637 ± 0.05) mm

• épaisseur au centre (10.0 ± 0.05) mm

♦ diamètre: 60mm f7

♦ diamètre utile : 51mm

• qualité de surface: 3/0.5(0.25) (norme NF ISO 10110-5)

• centrage axe optique / axe mécanique : <2arcmin

 traitement AR des faces 1 et 2 tel que la transmission soit supérieure à 98% dans la bande 0.4μm-56μm

• indice de réfraction: (1.601 ± 0.001) à 0.40μ m

 (1.590 ± 0.001) à $0.45\mu m$ (1.583 ± 0.001) à $0.50\mu m$ (1.574 ± 0.001) à $0.60\mu m$

Lentille 2

♦ type: Biconcave

♦ matériau: LAH58 (OHARA)

• rayon de courbure face 1: (-462.691 ± 0.05) mm

• rayon de courbure face 2: (71.539 ± 0.05) mm

• épaisseur au centre (10.0 ± 0.05) mm

♦ diamètre: 60mm f7

♦ diamètre utile : 51mm

• qualité de surface: 3/0.5(0.25) (norme NF ISO 10110-5)

◆ centrage axe optique / axe mécanique : <2arcmin

 traitement AR des faces 1 et 2 tel que la transmission soit supérieure à 98% dans la bande 0.4μm-56μm

• indice de réfraction: (1.923 ± 0.001) à 0.40µm

(1.906±0.001) à 0.45μm (1.895±0.001) à 0.50μm (1.882±0.001) à 0.60μm

Lentille 3

♦ type: Biconvexe

♦ matériau: FPL53 (OHARA)

rayon de courbure face 1: (69.210 ± 0.05)mm
rayon de courbure face 2: (-61.211 ± 0.05)mm

• épaisseur au centre (10.0 ± 0.05) mm

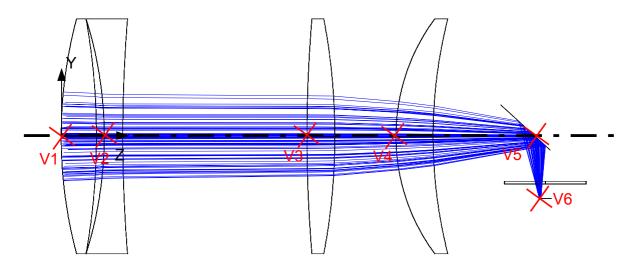
diamètre: 60mm f7diamètre utile: 51mm

• qualité de surface: 3/0.5(0.25) (norme NF ISO 10110-5)

◆ centrage axe optique / axe mécanique : <2arcmin

 traitement AR des faces 1 et 2 tel que la transmission soit supérieure à 98% dans la bande 0.4μm-56μm

• indice de réfraction: (1.447 ± 0.001) à 0.40μ m


 (1.444 ± 0.001) à $0.45\mu m$ (1.441 ± 0.001) à $0.50\mu m$ (1.438 ± 0.001) à $0.60\mu m$

Positions des vertex des différents éléments

Repère absolu placé sur V1 (voir schéma plus haut)

	X	Y	Z
V1	0.00mm	0.00mm	0.00mm
V2	0.00±0.05mm	0.00±0.05mm	110.97±0.05mm
V3	0.00±0.05mm	0.00±0.05mm	130.92±0.05mm
V4	0.00±0.05mm	0.00±0.05mm	140.92±0.05mm

COLLIMATEUR

Lentille 1

- ♦ type: Biconvexe
- ♦ matériau: S-LAH66 (OHARA)
- rayon de courbure face 1: (247.667 ± 0.05) mm
- rayon de courbure face 2: (-360.341 ± 0.05) mm
- épaisseur au centre (19.0 ± 0.05) mm
- ♦ diamètre: 127.mm f7
- ♦ diamètre utile : 120mm
- qualité de surface: 3/0.5(0.25) (norme NF ISO 10110-5)
- ◆ centrage axe optique / axe mécanique : <2arcmin
- traitement AR des faces 1 et 2 tel que la transmission soit supérieure à 98% dans la bande 0.4μm-56μm
- ♦ indice de réfraction: (1.800±0.001) à 0.40μm

 (1.789 ± 0.001) à 0.45μ m

 (1.781 ± 0.001) à 0.50μ m

(1.775±0.001) à 0.56μm

JM REESS – Version 10

Lentille 2

- ♦ type: Biconcave
- ♦ matériau: S-NPH1 (OHARA)
- rayon de courbure face 1: (-209.880 ± 0.05) mm
- rayon de courbure face 2: (795.272 ± 0.05) mm
- épaisseur au centre (10.0 ± 0.05) mm
- ♦ diamètre: 127.mm f7
- ♦ diamètre utile : 120mm
- qualité de surface: 3/0.5(0.25) (norme NF ISO 10110-5)
- ◆ centrage axe optique / axe mécanique : <2arcmin
- traitement AR des faces 1 et 2 tel que la transmission soit supérieure à 98% dans la bande 0.4μm-56μm
- indice de réfraction: (1.880 ± 0.001) à 0.40μ m

 (1.848 ± 0.001) à $0.45\mu m$ (1.829 ± 0.001) à $0.50\mu m$ (1.813 ± 0.001) à $0.56\mu m$

Lentille 3

- ♦ type: Biconvexe
- ♦ matériau: LAH59 (OHARA)
- rayon de courbure face 1: (758.816 ± 0.05) mm
- rayon de courbure face 2: (-341.183 ± 0.05) mm
- épaisseur au centre (15.0 ± 0.05) mm
- ♦ diamètre: 127.mm f7
- ♦ diamètre utile : 120mm
- qualité de surface: 3/0.5(0.25) (norme NF ISO 10110-5)
- centrage axe optique / axe mécanique : <2arcmin
- traitement AR des faces 1 et 2 tel que la transmission soit supérieure à 98% dans la bande 0.4μm-56μm
- indice de réfraction: (1.848 ± 0.001) à 0.40μ m

 (1.835 ± 0.001) à $0.45\mu m$ (1.826 ± 0.001) à $0.50\mu m$ (1.818 ± 0.001) à $0.56\mu m$

Lentille 4

type: Ménisque convergentmatériau: LAH59 (OHARA)

rayon de courbure face 1: (106.951 ± 0.05)mm
rayon de courbure face 2: (258.944 ± 0.05)mm

• épaisseur au centre (20.0 ± 0.05) mm

diamètre: 127.mm f7diamètre utile : 120mm

• qualité de surface: 3/0.5(0.25) (norme NF ISO 10110-5)

◆ centrage axe optique / axe mécanique : <2arcmin

 traitement AR des faces 1 et 2 tel que la transmission soit supérieure à 98% dans la bande 0.4μm-56μm

• indice de réfraction: (1.848 ± 0.001) à 0.40μ m

 (1.835 ± 0.001) à $0.45\mu m$ (1.826 ± 0.001) à $0.50\mu m$ (1.818 ± 0.001) à $0.56\mu m$

Positions des vertex des différents éléments

Repère absolu placé sur V1 (voir schéma plus haut)

	X	Y	Z
V1	0.00mm	0.00mm	0.00mm
V2	0.00±0.05mm	0.00±0.05mm	23.21±0.05mm
V3	0.00±0.05mm	0.00±0.05mm	132.51±0.05mm
V4	0.00±0.05mm	0.00±0.05mm	180.49±0.05mm
V5	0.0±0.1mm	0.00±0.05mm	255.49±0.05mm
V6	0.00±0.05mm	-33.52±0.05mm	260.96±0.05mm