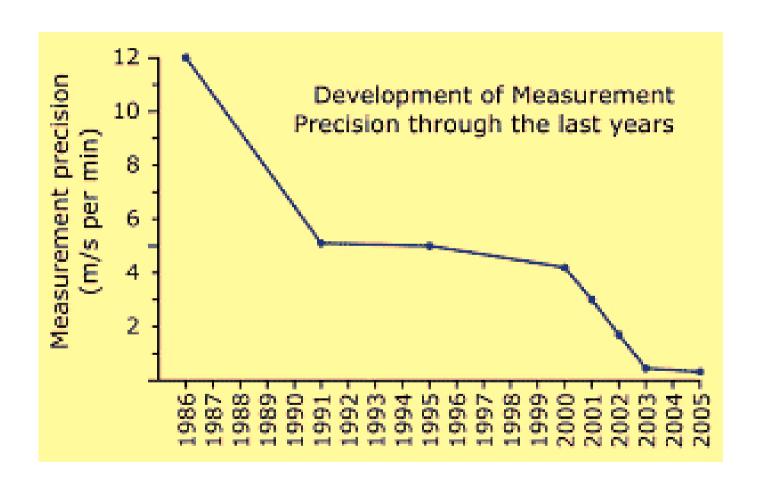
The basic outline of SONG

Frank Grundahl
Department of Physics and Astronomy
University of Aarhus

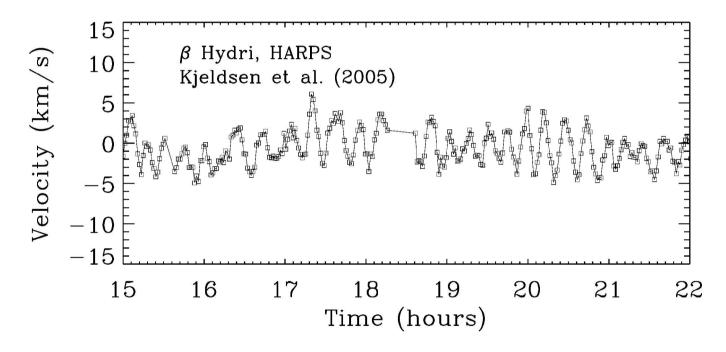
The SONG science goals are:

- 1. To study the internal structure and evolution of stars at a level of detail similar to that achieved for the Sun using asteroseismology.
- 2. to search for and characterize low-mass planets in orbits around other stars.
- 3. carry out daytime velocity measurements of the Sun


Observational limits

- Window function
- Sampling/Cadence
- Length of observing period
- Long term stability

Velocity precision is not the limiting factor


Limits to seismology and planet hunting

For bright stars the limiting factor is NOT measurement precision

We can measure solar-like oscillations directly

UVES, HARPS: Precision better than 50cm/s

So, do we need HARPS (3.6m) and UVES (8m) to do asteroseismology and search for planets?

NO! - The thought than became a SONG

CORALIE at the Euler telescope on La Silla

CORALIE can do asteroseismology

CORALIE has an overall efficiency ~1%

We can build a spectrograph with EFF > 4%

Can use an 0.6m!

SONG basic idea

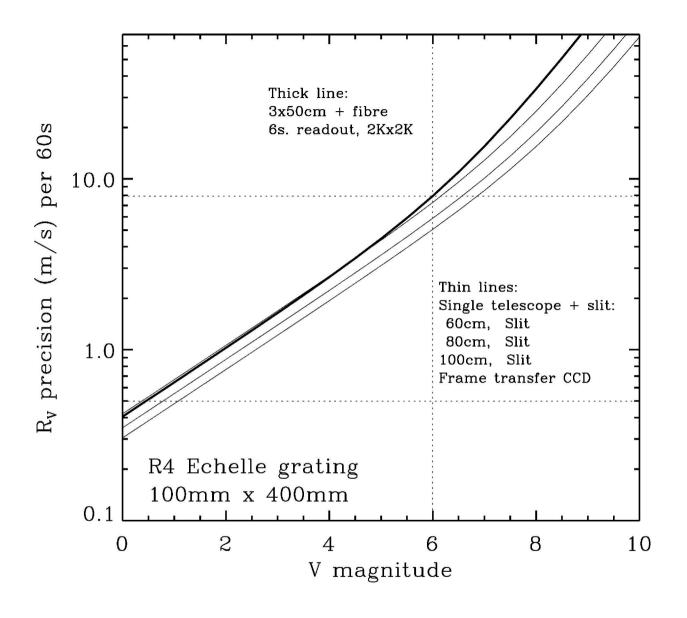
- optimize network for primary science drivers focus on bright stars, long time series
- design for simplicity and robustness
- low maintenance
- reduce running costs
- exploit proven concepts when possible

SONG baseline:

Network baseline:

- 8 identical nodes; 4 southern and 4 northern
- Dome with windscreen and possibly window
- Single, ~0.8m telescopes per node.
- State-of-the-art spectrograph, optimized for RV work. Use a slit and iodine reference cell.
- Remote operations.
- On-site, pipeline data reduction.
- Low maintenance requirements is a design goal.

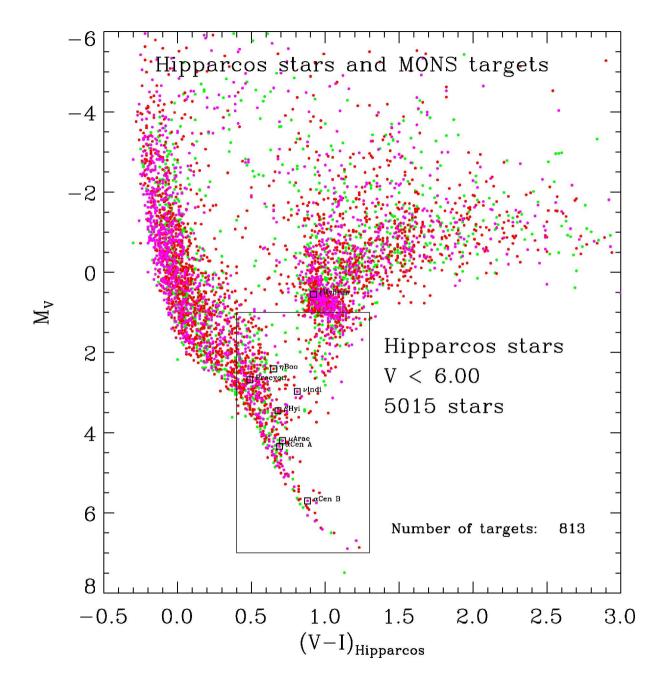
The first SONG workshop on small telescope networks for asteroseismology and planet hunting – Århus, March 21 to 24, 2006, Frank Grundahl


Spectrograph: Slit-feed, Iodine cell, R4 echelle, UVES like design. -- Proven Performance "well known" optical design.

Telescope: Alt-az, nasmyth platform, small secondary obstruction Critical point: can the telescope carry the spectrograph on the Nasmyth platform without excessive vibrations?

- Why Iodine: demand on spectrograph stability is less critical than for ThAr method, reduced cost.
- Why have we abandoned a fibre fed spectrograph?

 Fibres lead to lower efficiency

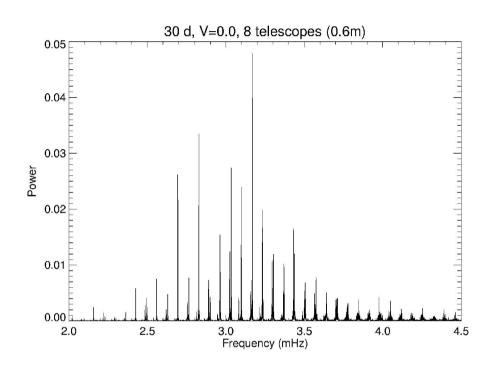

Seeing: 2"

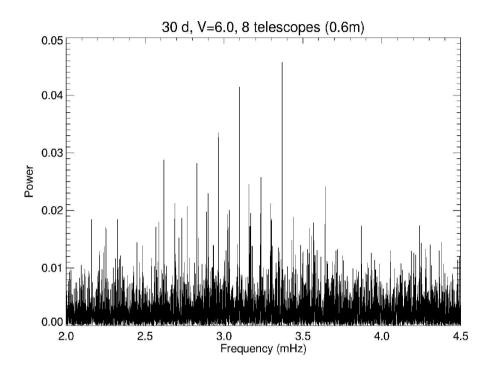
Airmass: 2.0

V-extinction: 0.14

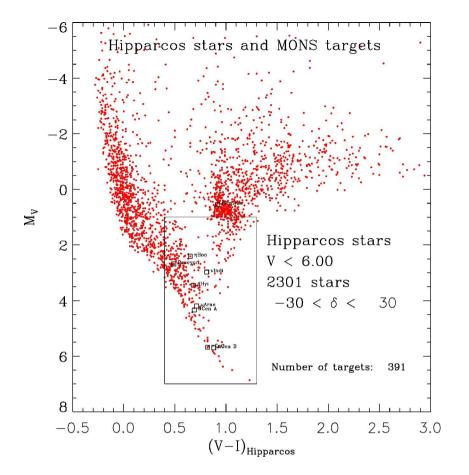
Both telescope/spectrograph combinations full-fill requirements!

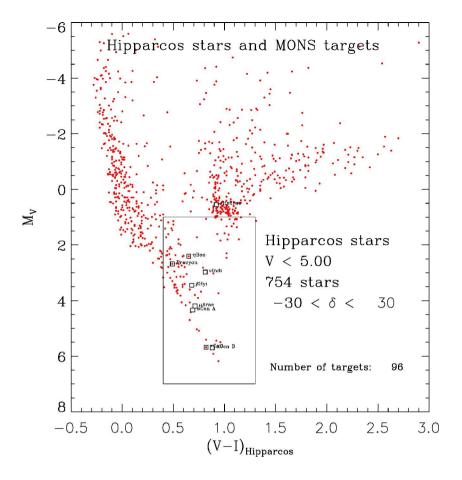
==== V	-90 <90</th <th colspan="2">-30<?<30</th><th>-90<?<0</th><th>) 0<</th><th>==== <?<+9(</th><th>)</th></th></th></th>		-30 <30</th <th>-90<?<0</th><th>) 0<</th><th>==== <?<+9(</th><th>)</th></th></th>		-90 <0</th <th>) 0<</th> <th>==== <?<+9(</th><th>)</th></th>) 0<	==== <+9(</th <th>)</th>)
	No mult	Mult	No mult	Mult	No mu	lt Mult	No n	nult Mult
0.0	0	1	0	0	0	1	0	0
0.5	0	2	0	1	0	1	0	1
1.0	0	2	0	1	0	1	0	1
1.5	1	4	1	2	0	2	1	2
2.0	1	4	1	2	0	2	1	2
2.5	2	5	1	2	0	2	2	3
3.0	4	10	2	5	2	5	2	5
3.5	15	24	9	13	6	9	9	15
4.0	36	59	19	28	17	29	19	30
4.5	78	118	41	59	38	58	40	60
5.0	137	210	64	97	68	104	69	106
5.5	284	417	126	191	146	219	138	198
6.0	583	817	274	392	299	428	284	389
6.5	1233	1659	596	809	631	868	602	791
7.0	2540	3332	1244	1617	1288	1707	1252	1625
7.5	5063	6481	2541	3216	2542	3265	2521	3216


No mult = Hipparcos multiple flag is NOT set


Mult = Hipparcos multiple flag is IS set

All targets can be "exposed" to interferometry!


GOLF data + realistic noise



Velocity precision @ V=0 @V=6 0.5m/s in 60sec. 7.8m/s in 60sec.

It makes a big difference for the number of turnoff and main sequence targets if it will be possible to work at V=6

Moving forward......

Prototyping: Spectrograph,

Telescope,

Data reduction

How you can contribute:

Money, work ideas, hardware,

Timeline:

2006: Concept Design Phase

Mar. 06: First SONG workshop

Apr. 06: Finalize spectrograph requirements and start design work

Aug. 06: Science Design Review: allow science focusing and

Science Requirements to be agreed on.

Midterm CDP Review: Status of SONG and focusing

of resources.

Sept. 06: Funding applications for next phase(s)

Dec. 06: Preliminary Design Review: ensure readiness for next

phases, locate potential problems and showstoppers.

2007: Detailed design and development, including prototype work

Acknowledgements

DASC – Danish AsteroSeismology Centre IDA – Instrumentcenter for Dansk Astronomi

Implementation and Cost:

Time line:

2006: Design Study

2007-2008 Development and construction

Deployment, Testing

2010 Operations start

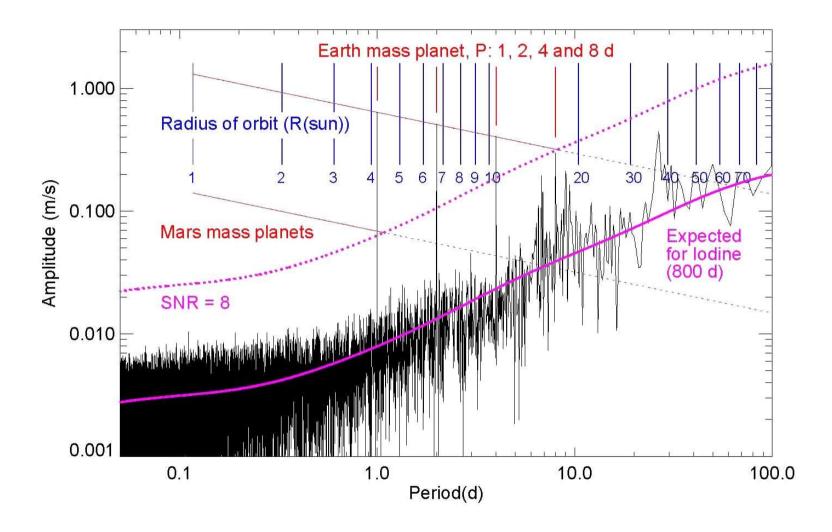
Budget (single site):

Telescopes: EUR 200.000,-

Spectrograph EUR 300.000,-

Sites, infrastructure, logistics EUR 100.000,-

Total EUR 600.000,-


Simulations of SONG performance by Hans Kjeldsen

Assumptions: 6% total system efficiency, scaled UVES performance. 3 40cm telescopes, 8 sites.

Magnitude Precision per minute

V = 0.0	0.45 m/s
V = 1.0	0.71 m/s
V = 2.0	1.13 m/s
V = 3.0	1.79 m/s
V = 4.0	2.8 m/s
V = 5.0	4.5 m/s
V = 6.0	7.1 m/s
V = 7.0	11.3 m/s

Preliminary design of the SONG spectrograph by Sam Barden (AAO)

- Fibre fed, 4 arcsec fibre diameter on the sky (50 micron diameter)
- R ~ 100000, 100mm beam diameter, R4 echelle grating
- 2K x 2K detector with 13.5 micron pixels
- 83% coverage of orders
- Room on detector for four input fibres, cleanly separated
- Nearly diffraction-limited optics
- Size: cylinder of 300mm diameter and 1200mm long.

